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THEORETICAL METHOD FOR DERIVING AN EARTH-CENTERED DATUM
FROM OPTICAL OBSERVATIONS OF THE EARTH'S HORIZON
FROM AN EARTH SATELLITEX

By Ruben L. Jones
Langley Research Center

SUMMARY /0 ?é/

The necessary equations for a theoretical method for obtaining directly an
earth-centered world geodetic system from angular measurements involving the
earth's visible horizon as seen from an earth satellite are derived. As a
check on the method, a computer program was written whereby data could be sim-
ulated and results obtained.

The method is found to be mathematically feasible, and the results for a
particular case are given to show the accuracy which can be expected under
ideal conditions. Further, when large variances in the observations were
assumed, the method was found to converge, although slowly. Finally, some of
the conditions for the most effective application of the theory are determined.

Although the method is found to be mathematically feasible and to converge
for large variances in the measurements, the results are preliminary and a
detailed statistical analysis is needed. As for additional applications, the
theory can be useful in a variety of theoretical studies, such as a study of
the accuracy penalties resulting from assuming the earth to be spherical rather
than oblate in navigation schemes and horizon-uncertainty studies.

A—J—-#

Mtz

INTRODUCTION

The technological advances since World War II have instigated a phenom-
enal growth in interest for an accurate world geodetic system. This increased
interest has resulted chiefly from the natiocnal objective of space exploration.

In order to complete a deep space probe, it is desirable to know the pre-
cise locations of the launch site and of the radar stations which will observe
the flight of the space vehicle. The error in the location of a point on the

*The material presented herein is based on a thesis submitted in partial
fulfillment of the requirements for the degree of Master of Science in Geodetic
Science, Ohio State University, Columbus, Ohio, May 1965.



earth's surface is not necessarily a function of the error in the survey alone.
Because of the irregular shape of the earth's surface, the variation of the
earth's internal density with location, and the uncertainty in the location of
the earth's center, the accuracy with which the launch site and radar stations
can be located on a particular datum is limited.

Geodesists have developed several sophisticated methods for dealing with
each of these factors. Even so, to date, data are insufficient to determine
precisely the earth's center and the ellipsoid which will best fit the earth
as a whole. Recently, the artificial earth satellite has been employed for
geodetic purposes. A major finding has been that the flattening f 1is approxi-
mately 1/298.3 rather than the 1/297 previously supposed. Further, the last
three digits of the magnitude of the semimajor axis a, previously thought to
be 6 378 388 meters, are seriously questioned.

The necessary equations for a theoretical method for obtaining directly an
earth-centered world geodetic system will be derived herein. The results for
a particular case will be given to show the accuracy which can be expected
under ideal conditions. Further, it will be determined if the method will, in
fact, converge when large variances in the observations are assumed; finally,
some of the conditions for the most effective application of the theory will
be determined.

SYMBOLS

A,B,C coefficients of quadratic equation

Azg geodetic azimuth

Azg spherical azimuth

a semimajor axis of earth

b semiminor axis of earth

c constant defined in appendix D

D radial distance from V to T

E column matrix of residuals

e eccentricity of earth

¥,L,M,3,A,P,0 functions (Main symbols are used in subscript position to
indicate the independent variable; for example, a is
the variable in @é’n.)

f flattening of earth




H horizon uncertainty

h height of surface point above ellipsoid

I arbitrary point in a plane

N normal to ellipsoid

NP North Pole

0 arbitrary observable

P upper limit of summation

”Q" rectangular matrix of coefficients of observation equations
LqJ row matrix of coefficients of arbitrary observation equation
R radial distance from earth's center (to a point)

Rm mean radius of earth

r perpendicular distance from earth's polar axis (to a point)
SP South Pole

5 radar station

T arbitrary point on earth's visible horizon

{U} column matrix of independent variable

u reduced latitude

v arbitrary location of space vehicle

W= Vl - egsin2¢

X,Y,Z rectangular cartesian coordinate system (to be defined)
X,¥,2 coordinates of point in X,Y,Z coordinate system

a earth subtense angle

B azimuth of point on earth's visible horizon as seen from vehicle
Y elevation of vehicle with respect to spheroid

4 elevation of vehicle with respect to sphere



A small finite change in variable
SN height of spheroid above geoid
6¢ difference between geocentric and geodetic latitudes

{E},{v} column matrices of residuals and corrections, respectively

€ element of E

n,E components of deflection of the vertical

6 angle between geocentric radii of vehicle and radar station
A longitude

M azimuth of plane of the vertical

v deflection of the vertical

P,T unit vectors

g standard deviation

) geodetic latitude

g' geocentric latitude

V¥ polar angle

w longitude east of origin of datum, Ag - Ao
Subscripts:

H horizon

I instrument

i particular azimuth or point on earth's visible horizon
k number of observation equations

m type of observation

n particular position of vehicle

o variable referenced to origin of spheroid

s radar-station-referenced variables (except where defined differently)
T total




sV measurement from radar station to vehicle

true true location or value

v vehicle-referenced variables
Notations:

' } column matrix

[ ] square matrix

L] row matrix

" “ rectangular matrix

¥*

least-squares estimate
Matrix exponents:
T indicates the transpose
-1 indicates the inverse
A bar over a symbol (or group of symbols) indicates a vector.
An arc over a symbol (or group of symbols) indicates an arc measure.

A primed function indicates a partial derivative.

BRIEF REVIEW OF GEODETIC THEORY

As is well known, the earth's figure is an irregular one. Furthermore,
the density varies from region to region. Therefore, in order to locate the
various features on the earth's solid surface, geodesy relies on two reference
surfaces, the geoid and the oblate ellipsoid. The geoid is defined most pre-
cisely as the equipotential surface of the earth's gravitation and rotation
which in the open ocean will coincide on the average with the mean sea level
and to which the waters on the ocean would tend to conform if allowed to flow
into very narrow and shallow canals cut through the land (refs. 1 and 2). Thus ,
the geoid coincides, on the average, with the mean sea level in the open seas
but will rise under the land masses in proportion to the attractiocn of the land
mass above mean sea level.

If the earth's surface were a perfect ellipsoid, the geoid would almost
be an exact ellipsoid. However, because of the irregularities in the earth's
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shape and the variations in its internal density, the geoid, although smooth,
is an irregular surface and follows the earth's mean contour. According to
reference 1 the geoid departs from the spheriodal shape by a few hundred feet
and in inclination by as much as a minute of arc. (Although there is a dis-
tinction between the terms spheroid and ellipsoid, the two will be considered
synonymous in this paper.)

The vertical axis of a level theodolite at sea level is coincident with
the direction of gravity at the point of observation. Further, the horizontal
axis of a level spirit level at sea level is normal to the direction of gravity
at the point of observation. Therefore, since the direction of gravity at sea
level is everywhere normal to the geoid, this is the surface to which the geode-
sist references all of his measurements. As a result, observables such as
astronomic latitude, longitude, and elevation above sea level are defined in
terms of the geoid. :

Astronomic latitude and longitude in the conventional sense are defined
as follows: the astronomical latitude is the angle between the tangent to the
observer's plumb line at its intersection with the geoid and the earth's mean
equatorial plane and is positive north. The astronomical longitude may be
defined as the angle between the mean meridian plane of Greenwich (this plane
contains the normal to the geoid at Greenwich and is parallel to the earth's
mean rotational axis) and the plane normal to the earth's mean equatorial plane
and containing the observer's gecidal normal mentioned and is measured positive
east of Greenwlch. To be precise in these definitions, it would be necessary
to substitute the word "instantaneous" for the word "mean." However, since the
orientation of the reference ellipsoid relative to the geoid must fulfill the
condition that its minor axis be parallel to the earth's mean axis of rotation,
the earth's spin axis will be considered to be its mean axis of rotation and
only the conventional definitions of astronomic latitude and longitude will be
considered. (See ref. 3.)

The elevation of a point is defined as its height above the geoid. For
the purposes of this paper, this definition will suffice. The act of measuring
an elevation by means of a spirit level assumes that an equipotential surface
adjacent to the geoid is everywhere equidistant from the geoid. However, this
is not true and, hence, heights obtained by spirit leveling over great dis-
tances must be corrected. (See refs. 1, 2, and k&.)

An oblate spheroid or ellipsoid of revolution approximates the geoid very
closely and is the second surface with which the geodesist is concerned. The
spheroid is a mathematical surface and is by definition smooth. It is, there-
fore, the ideal surface for geodetic computations and for locating geodetic
points.

The geodetic latitude is the angle between the earth's equatorial plane
and the normal to the ellipsoid containing the observer's projected position
on the geoid. The geodetic longitude is the angle between the meridian plane
containing the same ellipsoidal normal and the meridian plane of Greenwich
where bith planes are parallel to the earth's mean axis of rotation. (See
ref. 3.




If the astronomical latitude and longitude of an arbitrary pcint and the
azimuth of an additional point are desired, it is required only to observe
these quantities. However, if it 1s desired to locate a second point relative
to the first, it is, for the most accurate determination, necessary to connect
the two points by first-order triangulation; select an ellipsoid which will
best fit the region surveyed and define its orientation with respect to the
first point; then, calculate the geodetic coordinates of the second point on
the assumed ellipsoid. The resulting geodetic coordinates of the second point
would, most probably, not agree with those determined astronomically. The
major reason for this discrepancy is the varying density of the earth from
point to point on its surface, which would cause the vertical (or direction of
gravity) at the point to have a direction different from that of the normal to
the ellipsoid at that point.

The angle between the vertical and the normal to the ellipsoid is defined
as the deflection of the vertical. The deflection of the vertical can be
resolved into two components £ and 1, which are conventionally positive if
the inward vertical is directed to the south or west of the normal. (See
ref. 1.) The component of deviation in the meridian plane n 1is given by the
relation

n = Astrolatitude - Geodetic latitude (1)
The component in the prime vertical plane £ 1is given by the relation
¢ = (Astrolongitude - Geodetic longitude)cos @ (2)
In some texts the definitions of & and 1 are reversed.

A second reason for the discrepancies between astronomic and geodetic
coordinates may be a poorly defined datum or spheroid. The definition of the
datum of a triangulation network requires eight constants. First, the minor
axis of the ellipsoid is always defined to be parallel to the earth's spin axis,
and thereby, the orientation of the triangulation on the ellipsoid can be deter-
mined through the Laplace equation. This involves first the observation of the
three constants, the astronomic latlitude, longitude, and azimuth and then the
assigning of values to the two components of the deflection of the vertical
€, and 7,. Secondly, values must be assigned to the two ellipsoidal param-

eters a and f. Finally, the height of the ellipsoid above the geoid 3Ng
is defined to complete the definition of a datum.

The definition of a datum, except for the astronomic latitude, longitude,
and azimuth, is purely arbitrary. Generally, the geodetic and astronomic coor-
dinates may be defined as being equal at the origin. However, such an assump-
tion may not yield the best fit to the geoid. Consequently, it would be
desirable, in such cases, to define & and n to be different from zero.

The last three constants Eos TNo» and ON, represent an attempt to
define the center of the ellipsoid which, ideally, would be at the earth's cen-
ter of gravity. Because of the irregular shape of the geoid and the uncer-
tainty in the magnitudes of a and f which best fit the geoid as a whole,



this does not hold. Consequently, many independent surveys have been carried
out which have resulted in several spheroids (European, American, etc.), each
defined so as to fit best the particular area in question. Attempts to connect
the various spheroids have shown serious discrepancies. The failure to connect
the various spheroids is the result of two factors: the true deflection of the
vertical at the origin for each datum is unknown, and the constants of the best
fitting world ellipsoid are unknown.

Stokes has described and developed the theory of a method which, if grav-
ity observations over all the earth were available, would permit the calcula-
tion of geoid undulations at any desired point on the earth's surface. Vening
Meinesz later extended the theory to show that the components of the deflection
of the vertical could also be determined from gravity observations. (See
ref. 5.) When the earth as a whole is considered, the holdings of gravimetric
data are not by any means complete although enough data exist to make a few
very good approximations. In the scuthern hemisphere, observations are sparse
indeed. In the northern hemisphere, the picture is much brighter but still
sadly lacking.

The job of collecting gravimetric data is a gigantic and expensive under-
taking. Therefore, a more efficient and direct method of determining the best
fitting world ellipsoid is desirable,

There are several ways to determine the earth's figure. The most fre-
gquently used approach has been to observe the differences in astronomic lati-
tude and longitude from place to place and to connect the points of observation
by triangulation so as to determine the lengths of the degree of latitude
and/or longitude in different parts of the earth and to deduce the earth's fig-
ure from the results. Another approach has been through measurement of the
variation of gravity between the equator and poles of the earth. It was the
observation of the direction and intensity of the earth's gravitation which led
to the discovery of irregularities in the earth's figure and internal structure.

There have been a number of attempts to derive an ellipsoid which will
best fit (as a whole) the earth's figure. Until 1959, the international ellip-
soid (a = 6 378 388 meters; f = 1/297) was generally accepted as the truest
representation of the earth's figure. However, in reference 6, observations
of the Vanguard satellite were shown to indicate a flattening of 1/298.3.

These findings resulted in a rash of additional derivations of the earth's
ellipsoidal parameters. However, there is still disagreement.

Once the parameters of the best fitting ellipsold have been established
it would be necessary either to change the spheroids of the varicus geodetic
systems and recompute the station coordinates or to derive formulas for con-
verting from the old datum to the new. The two alternatives differ only in
the extent to which the computations are carried. For the first alternative
the coordinates of all geodetically established points would be changed. For
the second, a convenient formula would be provided for converting the coor-
dinates of any desired point on the old spherold to those of the new.




If it is desired to change a spheroid, one approach would be first to
redefine a, f, Eg, MNgs, and ONo and then compute the coordinates of the

observed station of the triangulation network again. There are available sev-
eral methods, of which the methods of Vening Meinesz and de Graaff-Hunter are
two that allow for a change in the datum without going through the rigorous
computation of the triangulation just outlined (refs. 1 and 7). Essentially,
if Ang, 2&,, OONo, OLa, and Af are the changes to be added to ng, €4,
8Ny, a, and f, respectively, the corresponding change in the geodetic lati-
tude A¢s, longitude AAg, and station height Ahg may be obtained directly.
The de Graaff-Hunter method was chosen for this study. In functional notation

Mg

Bhs

L(Aa SOF 08 o ;AN , 00N, )

M(la ,AF 08 o ;0N ,00N,) (3)

1}

Lhg = S(Aa:Af)Ago:AT]o:ABNO)

Assuming the availability of all desirable data, to establish a truly
world geodetic system and relate all existing datums to it by the previously
discussed procedures is an overwhelming task. Therefore, a method which would
allow the datum to be adjusted in addition to deriving a truly earth-centered,
best-fitting world ellipsoid would be of great importance. The development of
such a method is the purpose of this paper. Because of the magnitude of the
problem, however, the present report proposes to develop the concept according
to certain assumptions and apply it to a particular case. Some of the asso-
clated problems and areas for additonal work are pointed out as well as indi-
cations of the merit of the method.

ASSUMPTIONS AND GENERAL THEORY

If an artificial earth satellite is assumed to be at a polint V, 1n space
and Ry,n units from the earth's center at time +to, as is shown in figure 1,
and, by some suitable optical means, a point T4, on the earth's visible norl-
zon, 1s observed, the vector V. T; (assuming no atmosphere) is the line of

sight and is tangent to the earth at T4. If the earth's figure is assumed to
be a smooth oblate ellipsoid, the vector VET_ is perpendicular to EEE_?ormal
Ni to the ellipsoid at T4. The angle ony,ji included by vectors VpTi and

Ry,n 1in the plane of observation is defined as the TR subtense angle of the

earth

It is obvious that, in addition to being dependent on the size and shape
of the earth, an i will vary in magnitude as the plane containing VpTi and

ﬁ;,n rotates about Ry pn and as the location of Vp changes with respect to

the earth's center. Further, if the earth is assumed to be a smooth oblate
ellipsoid of revolution, due to the symmetry of the ellipsoid, ap,i 1is



Figure 1.- Optical observation of a point on earth's visible horizon
from a satellite.

independent of the vehicle's longitude xv,n' Then, if B; 1is the azimuth of

the plane formed by VpTi and .ﬁv,n measured in a plane normal to ﬁv,n and
clockwise from the meridian plane of Vp and if the spherical coordinates of
Vn are Ry pn, ¢¢,n1' %Q)n, where ¢%,n is the geocentric latitude of Vp,

the earth subtense angle for the jth th position in

space is written as

point of tangency and the n

n,i = F(a:f:Rv,n:¢$,n:Bi) (%)

In this analysis, the assumption is made that the lines of sight are truly
tangent to the solid surface of the earth and are not intercepted by clouds,
haze, or atmospheric scattering. Effects of atmospheric refraction are
neglected.

The earth's solid surface is an irregular figure. However, if it is
assumed that the elevations of various features on the earth's surface vary in
a random manner about some mean elevation, the summation of all the elevations
about that mean over any path would be zero. That is, if the earth's mean
shape is assumed to be that of an oblate ellipsoid of revolution, there is an
ellipsoid with semimajor axis a and flattening f. If this ellipsoid is
placed so that its geometric center is coincident with that of the earth (the
earth's geometric center and center of gravity will be taken to be synonymous),
the sum of all the elevations about it will be zero. Thus, if a large number
of subtense angles are observed from an artificial satellite at different
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positions in space and the geocentric radii and latitudes are observed from
some earth-based observation station, the datum to which the observation sta-
tion is referenced could be improved by the method of least squares.

An ellipsoid determined in the manner described here will represent the
earth's mean geometrical shape. Further, the resulting fit to the mean geo-
metrical shape will be a function of both the number of observations and the
particular surface features observed. For example, if observations are made
predominately in a mountainous region, the resulting ellipsoid would be larger
than desired. On the other hand, however, if observations are made only to the
surface of the oceans, the resulting ellipsoid would be smaller than desired.
(See previous section.) Thus, if observations should be made to all regions
of the earth's surface, the ratio of the number of observations on a particular
feature, such as mountain ranges and oceans, to the total can be assumed to be
proportional to the ratio of the area of the feature to the total surface area
of the earth, and the resulting ellipsoid would represent a best fit to the
earth's mean geometric shape. An error exists in using horizon measurements
in mountainous regions, because of the fact that the lines of sight from a
satellite to the horizon may be unable to reach the ground in valleys. Because
the oceans and seas cover approximately 2/5 of the earth's surface and the
mountainous regions comprise a very small portion of the total surface area,
this error would probably influence the resulting ellipsoid only slightly.

The two spherical coordinates of the vehicle Ry and $y , in equa-

tion (4) are dependent on the geodetic coordinates of the observation point and
the observations necessary to fix the location of the vehicle in space. In
functional notation

Py ,n

1]

\
(D(a;f:¢s;)\S:hS;Om,nJom—l,n: . . -:O]_’n)

= A(a:f:¢s:XS:hs:Om,n)Om-l,n’ .o "Ol,n)$ (5)

>
Ny
B
|

Ry,n = P(a,£,Ps,Ms,06,0m 1n:0p-1 05 - - .,ol,n))

where the values of m (m =1, 2, 3, . . .) represent the particular observa-
tions necessary for the purpose of fixing the position of the vehicle in space.

As explained in the section on geodetic theory, the geodetic coordinates
of the observation station in equation (5) are not independent of the origin
of the datum. Thus, since the datum is arbitrarily defined so as to obtain a
best fit of the ellipsoid to the surveyed area, the spherical coordinates of
the vehicle must be considered to be in error. The error in each is given by
its total differential. Consequently, the error equations are

11



P )

¢! = _52 a_d)_ _a_@_ d _8(); éi()__ o0 a0
d¢v,n =G et part > B + . dAg + S dhg + . P m,n
m=
P
N 3 A N AN z R B
=L da +  dr & S dNg + = dhg - do 6
d\y n . + ¥ + i P + e Ds + o s + L m m,n (6)

b
3P 3P P 3P z 3P
dR d. — 4f + =— 4d + =— dAs + =— dh. + ao
V,N a + St . ¢s ONs s dhg s aom,n m,%J

&%

m=1

Those variables Op p which are to be observed by some suitable method
may change with the ellipsoidal parameters a and f and the geodetic coordi-
nates of the observation station. Thus, if it is assumed that the error in each
dom,n is given by the relation

00 0 0. 0
o = L0 g TN 5. g TTMLN g4 4 T ML0 g 4 B0 gy
d m,n aa af S ¢S a.}\s s Bhs S (7)

upon substituting equation (7) into equation (6) and collecting coefficients of
like terms, error equations for the spherical coordinates of the vehicle as
functions of the errors in the ellipsoidal parameters and geodetic coordinates
and height of the observation station are

N
t L 1 t 1 1
d¢v)n =0, pdat+ O df + 0y dps + o n s + Oy n dbg
. J 1 H t 1
d\y n = Ma,n da + Afn df + Ag. p dgs + A%S)n dng + Ap_ ,n dbg (8)

1 1 1 1 |
Ry,n = Pa,n da + Pp p Of + Py dps + Pag,n dhg + Ppg,n dhg
~

where the ®', A', and P' coefficients represent the sums of the partial
derivatives of the particular function with respect to the variable indexed.

The differential operator d of equation (8) is equivalent to the A in
the relations of equation (3). The mathematical difference in the two, for
example, is that da represents an infinitesimal error in the variable whereas
Aa  represents a small but finite error in the variable. However, it is assumed
that the coefficients of the unknowns are linear over a finite range of the
variables. Thus, the two mathematical representations are taken to be equal,
and, therefore, the error equations for the spherical coordinates of the vehicle
can be determined as functions of a change in the datum.
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The relations of equation (3) are linear functions of their variables.

Therefore,

N

]

Dhg

Ahg

il

Lifa + LA + Lofng + LEAE, + Liyhal, )
Mifa + MPAT + MpAng + MiAE + MEyABN, >

Safa + SpAF + SiAn, + SpAE + SyeN,

/

(9)

where primed-function names represent the coefficient of the corresponding
unknown, which is given as a subscript. Then, after substituting equation (9)

into equation (8),

_ 1 N LI
MV:n B (Aa:n + LaA¢S:n + MaA?\s;n
[ ¢ 1 +

+ SfAhS’n>Af + (];nA¢S,n

S' 1 + r !
* St oo + (Lentg,,n

! i r_1 Lt
ARy ,n = Kpa)n * LaP¢s1n T Mafig,n
+ 8. VAP + (LePg o+
fPhs)n) ( T] ¢SJn

t 1 1 '
+ SgPhs’n)Ago + (LSNP¢S,n

ot 1 t ot LA |
+ SaCDhs,n)Aa + (‘Df,n + Lf¢¢s,n + qu)7\s,n
[ tat tat et
+ Moy o+ an>hs)n)Aqo + (L§<D¢S’n + ML
+ My + Saq®) 8N,
BN Ag,n &N "hg,n

1,1 1 t 1 T .1
+ SaAhs)n)Aa + (Af,n +Lghg oo+ Mty

1t 1, vt 1
Myfng,n * SnAhs,n)A”o * (Lg"sés,n * Mg m

1.1 t..1
n* LePg o on t MePy 0

Tt 1 1
MiPA,n * SqPhg n)Ano + (L§P¢S)n + MP

\ 1 ] 1
+ MgPA ot SSNPhS’n>A6NO

J

3

$ (10)

If the coefficients of equation (8) can be determined and are linear in
the'corresponding variables, the change in the spherical coordinates of the
vehicle due to a change in the datum can be computed by equation (10).

only the error equation for n,i

remains to be found.

Thus,

15



Since the function F of equation (4) may not be linear in its variables,
it is linearized by expanding it into a Taylor series and ignoring all terms
contalning powers of the variables higher than one. Thus, if

dgy = O

for all the remaining variables of F

i} gg) da <§§> ar oF OF a
n,1 (F)n’i ¥ (aa n,i * of /n,1 ¥ SRy n n,i dRy,n * ' 1 ¢V,n

i v,n

(11)

where a partial derivative of a function enclosed by parentheses and subscripted
indicates that it is to be evaluated for a particular azimuth at a point.

Equation (11) can be interpreted as stating that

Loy 1

il

Error in oy 3 = ap,j - (F)n,i = ap,i (true) - an,i (approximate)

éE) da + <§E> ar + (F e ag! (12)
(aa n,i of /n,i Ry,n/pn i 4By ,n ' i Pv,n

v,n

Substituting the necessary expressions from equation (10) into equation (12)
and collecting the coefficients of like terms gives the following error equa-
tion for ap j:

o = (Fi)a,g 8m ¢ (), a0+ (), oo + (7)., 6o+ (o), , 000

(13)
where F' 1s the coefficient for the variable subscripted.
Generalizing further, let
€ = Aﬂn,i ~N
H
= (r ) (F') (F' ) (F' > (F' ) 14
khd ( a n,i’ £ n,i’ o n,i, o n,i NG n,i (1k)
{u} = aa, ar, dne, dt,, asNo )
where
k=1, 2,

1k




is a particular observation. Then, in matrix notation

e = |au{v} (15)

Equation (15) represents only one observation. For a least-squares deter-
mination of the unknowns to be valid, it is necessary to have a large number of
observations. In the theory presented so far, two varying indices i and n

have been used. Thus, if {E} is chosen to represent a column matrix of k
elements and IIQ” is chosen to represent a k by J rectangular matrix of the

coefficients, where j 1is the number of unknowns and v 1s a column matrix of
corrections, equation (15) can be rewritten to read

llef[{v} = {E} + {+} (16)

which after requiring the sum of the squares of v to be a minimum becomes

lelflalliu*t = ol Tie) (17)

The product “Q"T”Q" is a square matrix and can be inverted. Therefore,

o = [haiet] " e ()

is the matrix representation of the least-squares solution for the unknowns
(ref. 8). A similar solution would be obtained for weighted observations.

As noted previously, atmosphere refraction has been neglected in develop-
ment of the theory. If equation (4) is referred to, it will be seen that the
observed subtense angle can easily be corrected for atmospheric refraction pro-
vided a sultable correction is available.

THE EXPRESSIONS FOR o AND ITS ERROR EQUATION

The theory given in the previous section was very general in that func-
tional notation alone was used. In this section the expressions for an,i
and its error equation are given.

The Expression for a

If a satellite is located at a point Vp in space and if by some suitable
optical means (assuming no atmospheric refraction) a point T4 on the visible
horizon 1s observed, the subtense angle ap,i 1s given by the functional rela-

tion of equation (4%). Furthermore, if the earth is assumed to be a smooth
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oblate ellipsoid, the line of sight V,T; 1is tangent to the earth at Ti and

perpendicular to the normal Nj. Then, it is shown in appendix A that the
desired expression for oap, j is

2
-B .+\E3 . o= BA sCo s
O‘ni=tan'l n,1 a,% n,im,i (19)
’ 2An,i
where
\
2
2
v - 2(:L 4 2 (2 2)sin’g’ _ + 2(R2
Apn,i = S - £)7 + Ry plaf - £%)sin ¢v,n Ry ,n
>

(20)

~"

2
Bn,i = (gf - f2>sin2¢\', + <1 - = )(1 - £)2|a2(2r - £2)sin opy . cos By
Ry ’ |

Cn,i = -a° ( - 1%2 >(1 IR <2 - %2_)(1 _5)2(er - fg)singyﬁ;,’n

+ (ef - fg)esin“gé{,’n

J

The positive sign is chosen so that %n,i is a minimum when fp 4 is zero.

The Error Equation for a

Before &, A, and P can be derived, it is necessary to decide what
method will be used tc fix the position of the satellite. Because of the high
accuracy obtainable, radar was chosen for this paper. Further, it is assumed
that perfect measurements are made.
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There are several techniques for fixing the instantaneous position of a
space vehicle by radar observations in use today. Since 1t is impractical to
discuss each technique and its individual application to the theory of this

work, the conventional measurements of range Ry, ,, azimuth Azg’n, and the
)

elevation above the horizon 7y, are taken to be observables.

The azimuth and elevation are geodetic azimuth and geodetic elevation.
Thus, if the datum should be changed, Azg,n; and 7y, must necessarily change.

On the other hand, however, the range Rsv,n is a pure measurement which
1s solely a function of the radar accuracy. As a result, derivatives of Rgy n
are taken to be zero.

With the assumptions stated herein in mind, it is shown in appendix B that
the coefficients of the expressions in equation (8) can be expressed as follows:
For df. .

J

_ a¢;,n g Mg + a¢%,n %p + a¢\'r,n aAZg)n )
a,n a¢é ONg oa 6p da MAzg da

£,0 " 3f\SN of | of ) | o6, of = Az 3¢

S,n

a¢;,n<é¢é Ny 6¢é> + a¢;,n By + 6¢%,n aAZs,n

o - ;,n P Ny + Py + ;,n By N a¢W'f,n aAZs,n > (21)
Psm T TSP \Ws Fs  Bs ¥n fn  Shzg, s

1
o _ ;,n 90y, + a¢v,n aAZs,n
As,D T TJgn g MMzg , Ohg

1 L} ]
ot - a¢v,n a¢s a¢v)n aen + ;,n Az
DsoB 7 gt 3y % by Ozg pn Obg )

S

L7



For d%v,n

N
A =0l aava,n .\ aﬁksv’n o6, . aaxsv,n BAZS,n
2
’ v,n 38, Oa oAzg da
AN
A% ) @% N ?v,n + aA}\sv,n 90y, + aA?‘sv,n aAZs,n
) ) v,n ¥y of  Azg , Of
Aé L= é am\sv,n aA7\sv,n on aA?\sv,n aAZng (22)
s n 1
s s a¢v,n ®n Mg aAzs’n Mg
i =1+ Qi ) ?v,n + aA}\sv,n 08 + aA}\sv,n aAZs,n
52 5> Mv,n aen a?\s aAZS n 67\5
ﬁs,n ﬁ i, 'sv,n + aA}\sv,n 90y, + Mgy n BZg n
I,
Py n ®n Mg NMzg , dhg J
For de,n
. . R . W LTS
[ n
’ 7 oy n " Ny n oy Oa OAzg n Oa
J ) o !
P = G i+ apy R v Tn S B
By n ! Mgy n dys, Of MAzg pn Of
Pt _ CD' BPLv,n 1 aRv,n aRV n 67;1 aRv n aAZS n
B.,n Bs,n 5 + A¢s)n + 2 + 2 2 (23)
v,n aN\SV,n a')'n a¢s aAZs,n a¢S
) d ' OR
)'\S;n = (D)'\S;n 5¢RY 2+ (A?'\s n l) RV)n R_V{n 57n + v,n aAZS’n
v,n ’ aN\sv,n Oy s MAzg  OAg
)
Pl'lsyn = (Dl'l ,n R.\l,—)n + Al; n RV,n + aRv:n 871!1 aRv)n aAZS n
T
s 5¢v,n s st,n d7;, ohg  Azg p ohg
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Further, the coefficients of equation (12) are shown to be given by

(@) _Pn,y Mny %5 OB domyg Hpyi )
da/n,i MAp,y da dBp,i Oa Cy,1 da

(_B_F_> _ O,y Mpy Oy g OBy Oay g Cp g
of /n,i MAp,; Of OBp,i Of oCp.i Of

(2k)

( OF ) Oy g Ay 4 . ooy 4 9By . Oy 5 Cp 4
n,1i

aAn,i a¢w'/,n aBn,i a¢;,n aCn,i a¢\'r,n

v,n

( AF ) _ Gy g Ay g N oy 4 9By 5 N oy 4 Cp 4
oRy n n,i 3An,1 aRv,n OBy, 1 Ry ,n oCn,1 BRV,nJ

The error equation for ,i is given in a general form by equation (13).

As stated previously, the coefficients of equation (13) are functions of those
of equations (8), (9), and (12).

For brevity, in this section the coefficients of equations (8) and (12)
were given in equations (21), (22), (23), and (24) as functions of indicated
partial derivatives. The indicated operations have been executed and the
results are given in appendix C. To obtain the algebraic expressions for equa-

tions (21), (22), (23), and (24), it is required only to make necessary
substitutions.

To complete the list of expressions for the solution of equation (13), it
is only necessary to rearrange the equations due to de Graaff-Hunter to the
form given by equation (9). This has been done and the results are given in
appendix D.

The foregoing has shown that the error equation for o, is determined

in terms of quantities which are known, are assumed to be observed, or can be
approximated. Thus, it is mathematically possible to derive by the method of
least squares an earth-centered geodetic datum from earth subtense angles
observed from an orbiting artificial earth satellite. It is now desirable to
mention ways in which the theory can be applied and some of the conditions
necessary for obtaining valid results. The former is the subject of the next
section and the latter will be discussed in a subsequent section.
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APPLICATION

There are several ways in which the theory of this paper can be applied,
but each will have one point in common with the other. All methods will involve
the direct observation of some angle either between two points on the earth's
horizon, between a reference line and points on the horizon, between a refer-
ence star and points on the horizon, or between some other reference and points
on the horizon. The approach chosen for a particular application will be
largely dependent on the type of instruments available and their accuracies.

For comparison and discussion this section will consider two applications.
One is simply that of observing the subtense angle directly and another is that
of observing angles from a polar star to points on the earth's visible horizon.

There is no need to discuss the first approach in any greater detail. The
assumption of being able to measure the earth's subtense angle by some means
either directly or indirectly was the basis for the derivations which precede
this section. The only drawback to such an approach is that the geocentric
radius is not a physical reality, but mathematically defined. Therefore,
instrumentation would be required to operate in such a manner as to allow the
precise determination of the direction of the geocentric radius.

The approach of observing directly the angle between the direction of a
polar star and the line of sight to a point on the earth's horizon is less com-
plicated from the standpoint of instrumentation than that of observing subtense
angles directly. Since the direction of a polar star would be known, it would
only be required to observe the direction of a point on the horizon relative to
the star. To utilize the "polar angle" determined in this manner, only slight
modification of the procedure developed in this paper is necessary.

Consider figure 2 in which the Z'-axis is considered to pass through the
vehicle's center and is positive in the direction of a polar star. If the star
is considered to lie directly above the earth's north pole, the Z'-axis is
always parallel to the earth's spin axis regardless of the location of the
vehicle, since the star is essentially infinitely distant. As a result, Z'
would translate about the earth's spin axis and, if Wn,i is the polar angle,

cos Wn,i = -(sin ¢;,n cos ap 4§ - COS ¢;,n sin apn,i COS Bi) (25)
Then,
d\lfn i t d“yn i
Wn,1 = g By n + —= dap 3 (26)
v,n aa’l’l,i
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where

v
Eerth centerlZ-— - —

Figure 2.- Geometric definition of polar angle and its relation to subtense
angle, azimuth of observation, and spherical latitude of a satellite.

\
1 . 1 .
N, i | cos ¢v,n cos oy 3 + sin Py o sin ay y cos By
.
v,n sin ¥y i
)
(
oy sin @ . sin ; + cos P . cos . cos By
n,i _ v,n On,i v,n On,i i
sin
dom 4 n,1 §

(27)

Therefore, since the expressions d¢; n and dan,i are known and the partials
J

of equation (25) are given by equation (27), after substitution the procedure
becomes the same as that for the subtense angle.

In the absence of real data a computer program was written for the purpose

of simulating data.

earth-centered datum.

The method of simulating measurements was briefly this:

The results were then used to determine the resulting

A datum was

defined at a selected latitude and longitude along with the coordinates of a
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radar station; various positions of the vehicle were assumed in terms of radar
measurements, and the approximate subtense angles were computed for certain
values of Bi; errors were then assumed to exist in the datum, and the true
coordinates of the radar station were determined by the method of

de Graaff-Hunter (appendix D), finally, the assumed azimuth and elevation of
the vehicle were corrected by equations (Bl4) and (B15) in appendix B, and the
true subtense angles were found for the assumed values of Bj. A similar pro-
cedure was used for the polar method.

The coordinates of the origin of the datum and the radar station and the
errors in the datum are given in table I. For simplicity, the vehicle was
assumed to be moving away from the earth at a constant elevation of approxi-
mately 57017"'4L.8" and azimuth of 225°. Observations were assumed to be ini-
tiated when

By = 0.0°
and
Rgy = 200 OO0 meters

where B4 was increased in steps according to the relation

b1
. = s o ——
Pi+1 = Pi ¥+ 755
whereas Rgy Wwas increased in increments of 200 000 meters. One observation
was assumed to be taken for every new value of By and Rgy. In table II the
resulting angles and residuals are given for the assumed true and approximate
subtense and polar methods for each geocentric latitude and longitude. Fifty

observations were taken and a solution was found after each, beginning with the
fifth observation.

TABLE I.- DEFINED CONSTANTS FOR TEST CASE

Variable §, radians|\, radians|h, meters|a, meters £ £, radians 1, radians

Origin of datum|0.52359870| -1.3089967| 10.0 6378388.0| 336.70834%x10-2 -9.692736xlo-6 l.h515551x10'5

Radar station .58067831| -1.3835296 .0 2.4242184 2.0000000

Change in datum -8.0 -223.01 -1.4673498 4.8484378 -1.2120342
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TABLE II.- TRUE AND APPROXIMATE SUBTENSE AND PCLAR ANGLES AND THE CORRESPONDING RESIDUALS FOR THE TEST CASE
. O, 1 radians ‘|’n,i7 radians
¢v,n; radian Rv,n! m
Approximate True €n,i Approximate True €n,i
0.56594264 6 541.37880 1.33965063 1.33965151 0.08770755 x 10-5 0.79708833 0.79711264 0.24315256 x 10~%
55480848 6 712.47816 1.24795322 1.2k795581 25974485 87816855 87819012 . 21578650
54416163 6 885.13547 1.17941563 1.17941847 .28L01545 93747975 .93750010 20355788
.53397802 7 059.23635 1.12312724 1.12312990 . 26640128 .985783L5 .98580305 .19593453
5242340k 7 23L.67654 1.07481548 1.07481781 23209582 1.02724484 1.02726388 . 15040743
51490762 7 411.36098 1.03226408 1.03226598 19020476 1.06399216 1.06401077 . 18605854
50597644 7 589.20282 L99hLLO6L .99414209 L 1hh75538 1.09728131 1.09729955 . 18246851
.Lo7higgh 7 768.1224% 95956622 95956720 09775206 1.12792277 1.12794%071 L17941519
48921833 T 948.04716 .92792249 .92792299 05027029 1.15647264 1.15649031 L 17676648
. 48135288 8 128.91018 89875341 89875344 00291677 1.183%2969 1.18334714 LL7hi3sTh
47380581 8 310.65023 87171028 87170984 -.0k395416 1.20878971 1.20880695 17236107
. 46656035 8 493,21103 .8k651871 L8L651781 -.09013019 1.23307787 1.23309492 .170LkgL87
. k5960066 8 £76.54085 80295781 82295645 -.13548122 1.25636923 1.25638612 .16879836
45291182 8 860.59189 80084630 . 80084450 -. 17992547 1.27880223 1.27881896 L 16723843
. bhel7975 9 045.32015 . 78003308 . 78003085 -.22340959 1.30048792 1.30050kk49 .16578592
L bho2g124 9 230.68488 . 76039049 76038783 -, 26589677 1.32151635 1.32153280 L16kb14s2
43433380 9 416.64851 . TH1809k2 .T4180634 -.30735944 1.34196140 1.34197772 .16310018
42859579 9 603.17636 .72419570 .72k19222 - 3h777h88 1.3%6188406 1.36190024 16182072
42306611 9 790.23612 LTOTHET35 LTOT46349 -.38712253 1.38133509 1.38135116 . 16055561
LA17T3LAL 9 977.79799 69155248 69154823 -. 42538216 1.40035701 1.L40037294 15928581
. 41259096 10 165.83383 67638758 67638295 - bees3hily 1.41898553 1.41900134 .15799372
40762655 10 35k4.31826 66191624 66191126 -. 49855760 1.43725084 1.43726650 . 15666309
LLo283257 10 543,22684 .64808811 64808278 -.53343026 1.45517844 1.45519397 .15527905
. 39820085 10 732.53739 63485798 63485231 -.56713004 1.4727900% 1.47280541 . 15382803
.39372376 10 922.22905 62218514 6221791k -.59963401 1.49010399 1.49011922 15229783
. 38939407 11 112.28216 61003273 61002643 -.63091897 1.50713594 1.50715101 15067755
. 38520498 11 302.67847 59836731 59836070 -.66096170 1.52389914 1.52391402 14895761
38115006 11 493.40105 .58715840 .58715151 -.68973931 1.54040478 1.54041949 .1k712977
.37722325 11 684.43394 57637817 57637100 -.71722952 1.55666232 1.55667685 . 14518707
37341885 11 875.76199 . 56600112 56599369 -, Tk341100 1.57267968 1.57269400 14312386
36973146 12 067.37125 . 55600384 55599616 -. 76826362 1.58846346 1.58847755 . 14093579
. 36615597 12 259.24861 LBUE364TS . 54635683 -. 79176875 1.60401905 1.60403290 13861977
. 36268757 12 451.38156 53706396 .53705583 ~.81290952 1.61935084 1.61936446 L 13617394
.35932167 12 643.75854 52808310 . 52807475 -.83467103 1.63446228 1.63447565 13359768
35605398 12 836.3%6856 51940512 .51939657 -.85404059 1.64935607 1.64936915 . 13089154
. 35288040 13 02g.20127 .51101422 51100550 -.87200791 1.66403410 1.6640L691 .12805722
. 34979706 13 222.24689 .50289571 50288682 -.88856524 1.678L9769 1.67851020 12509756
. 34680028 13 415.49623 49503592 . 49502688 -.90370756 1.69274753 1.69275974 12201642
34388659 13 608.94072 48742210 4B741292 -. 91743265 1.7067838% 1.70679572 11881872
. 34105268 13 802.57201 .4Book23s . 48003306 -.92974126 1.72060630 1.72061785 .11551031
. 33829541 13 996.38247 .b7288556 7287616 -. 94063716 1.73k21423 1.73422544 .11209795
.33561179 14 190.36460 46594132 46593182 -.95012715 1.74760655 1.74761741 . 10858925
33299901 14 384.51171 45919986 45919028 -.95822120 1.76078182 1.76079232 10499261
. 33045435 14 578.81689 4526520k 45264240 -.96493241 1.77373831 1.7737484L .10131710
32797527 1 773.27418 4628929 k627958 -.97027703 1.78647399 1.78648375 L09757244
32555931 14 967.87751 44010350 . 4k009376 -.97hoThil 1.79898660 1.79899597 09376891
. 32320416 15 162.62126 43408711 L3LoTT3M -. 97694713 1.81127362 1.81128262 .08991726
. 32090760 15 357.50020 k2823295 42822316 -.97832064 1.82333237 1.82334097 08602865
31866752 15 552.50907 42253428 Lpesalso -.97842351 1.83515994 1.83516817 08211453
31648193 15 7h7.64323 41698475 41697498 -.97728717 1.8467533% 1.84676115 07818659
RESULTS AND DISCUSSION
In figure 3 the five arbitrarily defined constants of the datum are plotted
as a function of the number of observations. The results for both the subtense-
angle case and the polar-angle case are shown.

For both cases the results converge to the true values quickly, as is
expected. Theoretically, since no random errors have been assumed to exist,
convergence should be instantaneous. However, because of certain approxima-
tions and computer noise, instantaneous convergence will not result. Of the
two methods, the polar-angle method appears to give the better results.
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One peculiarity is noticed in the case of the subtense angle. A sharp
spike occurs in these curves at the sixth observation and is most pronounced
in the Af, curve. This oddity is not the result of computer noise.

There are two possible reasons for the spike effect. One is a poorly con-
ditioned matrix, and the other is a possible breakdown in the equations at the
sixth observation for this example of the subtense case.

A detailed study to determine which possibility, if either, is reasonable
is beyond the scope of this paper. However, two cases were run to determine
the effect on the spike of increasing the number of instantaneous observations
at a given point. One case assumed 20 instantaneous observations, and the other
assumed 200 instantaneous observations at each point. The spike disappeared in
the latter case and was still present in the former. Since no discrepancies in
the remaining determination are noted, the spike effect will not be discussed
further. '

It will be recalled that in the derivations which preceded this section,
80s was considered to be a variable. In reality the maximum value of &pPg 1is

approximately 12' of arc at 45° latitude and should remain relatively constant
A
for a small change in latitude (that is, —é%éil ~ 0 when APy is small).
s

To determine the effect of &y on a determination, two cases were run in
which 8¢s was first assumed to be a constant by equating its partials to zero

and then a variable. Further, the approximations

sin &g =~ 8fg

cos dfg =~ 1

were assumed valid in both cases. The results are shown in table ITI1 for the
first determination of each case only, since it is representative of the
remaining determinations.

TABLE III.- CALCULATED CHANGE IN DATUM FOR TWO CONDITIONS OF g

Assumption | Aa, meters PaNy A, radians Ang, radians ABNg, meters

s = Constant L o
Sin 8fg =~ 8 | -T1.126503 -0.10408976 x 10~ | 3.479kT2T7 X 1072|-0.14433988 x 10 4,3626973

Cos &g =~ 1
50s = Variable
Sin 8fg ~ 8fg | -221.53143 | -.14628869 .51204351 -.12143458 -7.8855827

Cos &g =~ 1
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When the results of table III are compared with the desired results given
in table I, it is seen that 8¢S has a large influence on the results, which
was not expected, since ®fg 1is so small and increases slowly. When ©fg was
considered to be constant the results were unacceptable although systematic.
When approximations for the sine and cosine of 5¢s were substituted for their
true values, the results were considerably better although not as accurate as
hoped for. As a result, it is concluded that for best results, g cannot
be assumed constant, and it is necessary to use the true sine and cosine of
8ps in the methods of this paper.

Since it has been intended to show that the method is mathematically fea-
sible and to show some of the conditions under which best results are obtained,
results discussed thus far were computed in double precision on an electric
data processing machine. Although it is not the purpose of this paper to do a
statistical analysis of a practical application of the method, 1t was decided
to generate some random numbers which could be added to the observed angle for
the polar method. Thus, it could be determined if the method will converge or
not with a large standard deviation of measurement.

The variance of the subtense angle is given by the relation

2 _ 4.2 2
op~ = o7 + oy

where @ 2 is the variance of the instrument and the variance of the horizon
uncertainty is given by the relation

(from ref. 9). For the case of the polar angle, the relation for oy differs

from that for the subtense angle in that 0H2 must be multiplied by the expres-
. . . ; R b

sion for Bwn)l/éan,i (see eq. (27)) to satisfy the condition that oy be a

minimum for B4 = % radians and for B4 = 2 % radians. After a relation for

L

the variance of the polar angle has been determined, random numbers can be
generated for the purpose of testing the convergence of the method.

The case tested was identical to the one used throughout this paper with
two exceptions. First, the incremental increase in Rg, was reduced to

2 kilometers to keep Rgy small. Secondly, the azimuth Azg n and eleva-

tion 7y, were increased in steps of —10'6 radians. The incremental changes

for each variable were applied simultaneously, and one observation was assumed
for each point in space.
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The test case was computed for two instrument variances. In both cases,
the horizon uncertainty H was assumed to be 1.6 kilometers. For the first
case, o1 was taken to be 5 X 102 radians, and for the second case, o Wwas

5 X 10'4 radians. (In ref. 10, a horizon scanner is described with an accuracy
of 0.1° of arc.)

The results in both cases were encouraging in that the sigmas for each
unknown do, in fact, converge. However, convergence was slow. The results for
both cases in which 30 OO0 observations were taken are shown in table IV. It
should be noticed that the standard deviations for Af, Af,, Ang, and AdN,

are still larger than the desired values (table I).

TABLE IV.- LEAST-SQUARES ESTIMATE AND STANDARD DEVIATION FOR 30 000 OBSERVATIONS

Standard deviation
instrumens error, | FEsSWt | fa, meters of 8o, radians Ang, radians | ABN,, meters
radians
5 Estimate | -0286.20804 | -0.22345918x107% | 0.06674525x10"3 | -0.05669926x107% | 0190.9408k
S g 0069.21024 | 0.09471739x107% | 0.11432682x1073 | 0.16108228x1074 | 012%.95359
5 x 10-4 Estimate | -0512.92349 | 0.03380511x107% | -0.26321512x107> | 0.08:05173x10™* | 0069.04514
g 0388.95248 o.u7378258x10"“ 0.4379303Lx10"3 o.51h1u847x10-“ 0348.57976

The results discussed here do not by any means constitute a complete error
analysis of the method. No effort has been made to incorporate observations
from more than one radar station. Further, it is not known how multiple horizon
Observations at each space point will affect the rate of convergence. The
results do, however, demonstrate that the answers will converge for large var-
iances in the observations when sufficient data have been collected.

CONCLUDING REMARKS

A theoretical method which can be used to derive an earth-centered goedetic
datum has been derived and tested by mathematical simulation. Although a prac-
tical application of the method must necessarily include instrument errors and
corrections for refraction and aberration, in this simulation such errors and
corrections were omitted.

The results of the simulation for a test case proved it to be mathemati-
cally feasible. Further, when large variances in the observations were assumed,
the method was found to converge, although slowly. Even so, additional statis-
tical studies of the method are desirable. As for immediate usefulness, some
of the required relations may have application in other areas of research -
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such as, accuracy penalties resulting from assuming the earth to be spherical
rather than oblate in navigation schemes and horizon - uncertainty studies.

Tests conducted to determine if the difference between the geodetic and
geocentric latitudes 6¢S could be considered to be constant for small changes

in latitude and sufficiently small to allow its sine and cosine to be approxi-
mately 6¢S and 1, respectively, gave unacceptable results. When the trigo-

nometric functions were approximated only, the results were acceptable although
the accuracy was not as good as hoped for. It is therefore concluded that for
best results, no approximations can be made in &Py, but acceptable results can

be obtained by approximating the trigonometric functions of 6¢s only. Finally,
under no conditions, could 8¢s be considered constant.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., December 10, 1965.
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. . APPENDIX A

DERIVATION OF a

As explained in the text, if a satellite is assumed to be located at a
point Vp 1in space and if by some suitable optical means (assuming no atmos-

pheric refraction) a point Ty on the visible horizon is observed, the subtense
angle ap j 1s given by the functional relation of equation (4). Furthermore,

if the earth is assumed to be a smooth oblate ellipsoid, the line of sight
V,T; 1is tangent to the earth at Tj and perpendicular to the normal N;.

These two assumptions are the basis for the derivations which follow. In addi-
tion, the vehicle is considered to be frozen in space with respect to the earth,
since on,i is independent of longitude as will be shown subsequently.

Consider figure A-1 in which X, Y, and Z are the axes of a right-
handed, earth-centered, earth-fixed, rectangular Cartesian coordinate system

Y
@1
Earth center L

\

Figure A-1.- Geometrically determined longitude of a polnt on earth's
visible horizon relative to location of a satellite.
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where the Z-axis is parallel with the earth's spin axis, the X-axis is parallel
with the intersection of the Greenwich meridian and the equatorial planes, and
the Y-axis completes a right-handed system; Ay and Kv,n are the longitudes

of Ti{ and Vyp, respectively, and are conventionally measured from the
Greenwich meridian positive in the eastward direction; @; is the geodetic lati-

tude of T3 conventionally positive north from the equatorial plane; ry and

ry n are radial distances from the earth's spin axis to T4y and Vp, respec-

tiéely; the plane T5V,I is tangent to the ellipsoid at Ty; and Nj is the
normal to the ellipsoid at Ty.

From figure A-1

N; = - (A1)

AZl,n = Zv,n - Z3 (A2)
and
2 2 2
Vil = reon+ (Nisin By - 25 + 2, 5)° - M (a3)
From the law of cosines,
2
2 2 2
V T‘ - AZ- - I - s
cos Ay 4 = 22 1,0 A1 x (Ak)
~2ry ,nTi

Thus, after substituting equations (A1) and (A2) into (A3) and the resulting
expression into (AL), the result reduces to

sin @,
r; - Az =
i i,n\cos ¢i
cos AAn,i = - (A5)
)

But

tan @ = (1 - e@)tan @5

and, from figure A-1
1 Zj_
tan @; = o
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Therefore,

sin @5 Z3

cos ¢i ri(l - e2)

and, after substituting into equation (A5) and factoring,

cos ANy j = rri 1- Zfﬁzi’n (A6)
v,n (1 - ee)r§
From figure A-1,
r? = XE + yg
But, from the equation of an oblate spheroid,
rjg_ = xig + y% = Z—i(be - zg) (A7)

Therefore, when equations (A7) and (A2) are substituted in (A6) and the results
reduced

2
b -z Zs
a v,nZi
cos AN, ; = 2 (A8)
n,l brv)n (b2 _ Z?>l/2
i

It is convenient here to define two additional coordinate systems,
X',Y',z2' and X",Y",Z", which are, also, right-handed, rectangular, and
cartesian. As shown in figure A-2, the X',Y',Z' system is earth-centered and
the Z'-axis is parallel to the earth's spin axis and positive north, which is
equivalent to the Z-axis of the X,Y,Z system. The Y'-axis lies in the equa-
torial plane and parallel with the intersection of the vehicle's meridian and
the equatorial plane and is positive in the direction of the satellite. The
X'-axis completes the right-handed system. The X",Y",Z" coordinate system
is vehicle-centered and defined in such a manner that the Y'-axis is parallel
to the radius vector ﬁ})n and positive in the same direction as Rv,n3 the

Z"-axis lies in the plane of observation normal to the Y"-axis, positive in the
positive direction of Dp,y and Pj degrees clockwise from the meridian of
the vehicle; and the X"-axis completes the right-hand system.

The coordinates of the satellite xy n, ¥y, n» 8nd 2zy p in the X,Y,7Z

system become O, Ty,n» and Zy,n in the X',Y’,Z‘ systeﬁ where

H
1

1
v,n Rv,n cos ¢v,n

R t
v,n = Ry,n sin ¢v,n
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Y"
T
v
ot n
- Bi
A X'
a ) Zn
n,i
R
v,n
Dn,i
n.
i,n R,
J i Ti(xé, v Zi)
Farth center "

XI

Figure A-2.- An optical observation relative to a satellite-
centered coordinate system.

and the coordinates of the point of tangency Ty become x{, y{, and zj.
Further, since the vector Dn,i (Dn,i = VT4 in fig. A-1) originates at the
satellite and terminates at the point T4 on the visible horizon, the coordi-
nates of T4 can be expressed in terms of Dn,i and ap j as
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¥i = -Dn,i cos oy 3

zy = Dp,j sin ap 4

Thus, from figure A-2

or

2 2 1
= R{ + Ry pn - 2(1'\,,nyi + Zv,nzi) (A9)
and, since
2 1 o)
1 a
Vi =1, cos ANy = 2= (b -z Zi) (A10)
i 1 1 _b2 rv’n v,
equation (A9) becomes
2
2 2 2 2 a
Dn,i = Rf + Rv,n - 2a% - gzv,nzi(l - ;§> (A11)
Furthermore, by the cosine law,
2 4+p2, -2 ; cos . = RS
Rv,n n,i RV:nDn;1 “n,i 1
or
2 2 2
2Ry ,nPn,i c0s an 3 = Ryn + Bn 4 - Ry

which, upon substituting equation (All) for Dﬁ,i and solving for Dy j,

reduces to

: 2
2 a
R - a“ - 7 z.l1 - =—
n v,n l( )
D . o= ’ b) (A12)

n,i
’ Rv,n cos an,i

To find xi, yi, and zj, first rotate the X",Y",Z2" system about the

Y"-axis through the angle B3, then rotate this system about the X"-axis through
the angle ¢;, and, finally, translate the origin to the earth's center. In
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matrix notation

(" B ar A w SR
X; 1 0 0 cos By O -sin B; 0 0
1 . 1
y; ) = {0 cos ¢v,n -sin ¢v,n 0 1 0 -Dp,q €08 op 3 ) * <rv,n
. 1 1 . R
Lfi 0 sin ¢v,n cos ¢v,n sin B; O cos By LDn’i sin ay 4 L%v’g
— - - -
and
1 . .
x; = =Dy 3 sin ap j sin By B
1 1 . . 1
Yy = —Dn,i(cos on,i cOS ¢V,n + sin %p,i COS By sin ¢v,n) + rv,n (A13)
- in @' - . +
zy = —Dn,i(cos a, ; sin ¢v,n - sin ay j cos By cos v,n> Zy,n )

Substituting equation (Al2) for Dn,i 1in the expression for zj and
solving for z4 yields

2 2
R - a
n : 1 1
Zy,n " & <§ln ¢v,n - tan Ap,i COS By cos ¢V,n)
7. = ’ (A1L)

i
2
a . D1 . 1 1
1 - (} - ;§>(51n ¢v,n - tan ay 3 cos Py sin ¢v,n cos ¢v,n)

which is the desired equation.
From figure A-2,
ﬁv,n X By = PRy nRi sin my p
where p 1is a unit vector normal to the plane formed by ﬁv,n and ﬁi- Thus,

(ﬁv,n X ﬁi) . (Rv,n X 'ﬁi>

l=506: 2
(Rv,nRi sin ﬂi,n)
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which, after substituting the rectangular representations of ﬁv,n and Ry,

performing the indicated operations, and solving for sinzni,n becomes

2
ry 2

2
,n71

2 2
1 1 2 2 1 2
- 2Ty nPvYiZ t (yi) Zy,n ¥ Zv,n(xi) + rv,n(‘x‘

.2 _
sin®ny p =

Now, by the sine law,

2 .2
Ry sin™m.
inley . = _1 i,n
sinan 3 5
n,i
Thus,
2 2 ' 1\2 2 2 12 2 2
) _ rV,nZi - 2rv,nZv,nini * (yi> Zv,n + Zv,n(xl) rv,n(xi)
Slnd,n’i— 5 >
Dn,iRv,n

Substituting the identities

-
yi = %- rj'n(bg - Zv,nzi)
v o e [WPra o) ,21/2
x =|ri - \y1) = Lb—g\" Y <>Tl
a® 1
v (1 - £)°

H
i
|£17
N
]
1
N
H
]
H
\v}

and rearranging the terms gives
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2 2 2
_ la 24! 241 _ 2 Dyt _a _a%\ 2
= |25 sin 1) o +ocos ¢v, tanay, 4 sin ¢v,n 1-= S |71
b b b
2 2
R - a 2 2
+ ool B ftan, - 2 1 -8 )z sin @y o (A15)
|i< Bv,n > i Rv:n e ' ’

When equation (Alk) is substituted for 2z in equation (A1l5) and the
results are reduced and rearranged, an equation of the form

2
An,i tan an,i + Bn,i tan an,i + Cn,i =0
where
2 o) 2 A
R‘V n- @& L4 2 1
Apn,i = —L-n— (L-f) + Rv,n(Qf - fg)sinzyﬁv,n
2
2
+ 2(R?,}n - a2>(l - 1) ](Qf - f2>sin2¢:,,n + ((2f - fe)sin2¢.:l_’n
2
£ (1-10)°1 - 2 (Rs,n - aE?(Qf - fg)cosg¢; 0 cos2;3i
Ry,n ’ > (A16)
e - essay « (1 - 2)r - 02a2er - )orn e
By,i = (\2f - £5)sin"B + (1 - — (1 - £)7|a"\2f - £7)sin 26, |, cos By
Ry ,n
nf .2 l 2
Cp,i = -a° < - Z ){1 -t + [2 - g (1 - f)2(2f - fe)singgb.:,,n
2t Rv,n
2
+ (2r - £2) sinugb\',)n
J
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is obtained. The desired expression for on,i is, therefore,

2
1/ Bn,i * VBnLi - bAp iCp g

(A17)
2An,i

“n,i = tan”

The positive sign is chosen so that on,i is a minimum when Bn,i is zero.
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AN ERROR EQUATION FOR «a

"

In the section entitled "Assumptions and General Theory," the general
expression for the error equation of alpha (eq. (13)) was derived, and in
appendix A, the expression for F was derived. To complete the solution of
equation (13), it is necessary to derive first the expressions for the func-
tions ®, A, and P so that the proper partial derivatives for determining
the coefficients of equation (ll) can be obtained.

The partial derivatives of ¢, A, and P are unwieldy when no form of
generalization is utilized. In an effort to generalize, the necessary partial
differentiation of individual expressions will be indicated only in this sec-
tion. The reader is, therefore, referred to appendix C for the necessary alge-
braic expressions which result from the partial differentiation.

Before ©®, A, and P can be derived, it is necessary to decide what
method will be used to fix the position of the satellite. Because of the high
accuracy obtainable, radar was chosen for this paper.

There are several techniques for fixing the instantaneous position cf a
space vehicle by radar observations in use today. Since it 1s impractical to
discuss each technique and its individual application to the theory of this
work, the conventional measurements of range Rsv,n’ azimuth Azg,n, and the

elevation above the horizon 7, are taken to be observables.

Of the three observables listed, only the range is independent of the
deflection of the vertical. The dependence of Azg’n and 7yp on the compo-

nents of the deflection of the vertical will be shown subsequently in this
section.

The relations of equation (6) can be rewritten as follows:

~
-} o0 o) 0 o) 0 o) dA
dfy n v i dps + Shs dAg + b dhg + S d7n + Szgy o Zsv,n
aA Y A A A oA aA . (
Ay n = — da + £ af + S g S X S — dA Bl
v,n = = a St - B + e dAg + Shy dhg + e In t e Zgv,n (B1)
- ap P P P 3 9P
de)n—aada+afdf+—sdjés+-a>\—sd7\s+&dhs+md7n+a‘kzsvndAzS’n
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The partial derivatives of ¢, A, and P with respect to the range are zero,
as explained previously in the text.

Thus, the rectangular coordinates of the radar station in the X,Y,Z
coordinate system are

Xg = (Ns + hS)cos Ps sin Ag A
vg = (Ns + hg)cos Pg cos Ag > (52)
B2

N
ZS = (NS + hs) 1l - ﬁ:-iTs) eg}sin ¢S
W
and

NS = % (BB)

is the expression for the magnitude of the normal to the ellipsoid where
2) ... 2
w2=1-(2£-¢ )sin?d,

(ref. 1). Therefore,
Zg Ng

T _ _ o2 a
tan ¢S—-;2—+——y'g—- l-m(gf f)tn;bs (B)-J»)

where

of - £2 = &P
is the relation between the geocentric and geodetic latitudes.

The total differential of equation (B3) is

ON ON oN

= 5 S af S 4 B
s = o= da + — + 7. P (B5)

and that of (B4) is

. Ay %, B ., Fs
dpg = = dNg + 5 dhg + 55— af + 5. dfs (B6)

Thus, after substituting equation (B5) into (B6) and collecting coefficients of
like terms
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d¢;“a¢é—N§da+<a¢ My +a¢;>d_f <a¢' s aN)Sés a¢'

dhg  (BT)

dNg of s op

In figure B-1, the relation at the radar station (or site) s of the nor-
mal to the ellipsoid Ns, the geocentric radius vector of the site Rg, and the

range vector Rsv n 1is shown. (The arrowheads indicate positive directions of

the vectors.) The vectors ﬁg and Rgy p are in the plane of the paper so

S

that the line segment sH represents the plane of the horizon and the vectors
Ns and Rg are in the meridian plane.

If s 1is considered to be the center of a unit sphere, the spherical
triangle DEF in figure B-1 can be formed where the angle at D is

D=mxn - Azg,n

the angle at E 1is the spherical azimuth of the satellite AZS,n: and 6¢S is
given by the relation

50s = Ps - Ps (B8)

Thus, from the cosine law for spherical triangles,

sin y, = cos 8fs sin y, - sin Bfg cos ¥, cos Azg o (B9)

and from the law of sines

sin Azg pn = ——— sin Azg p (B10)

oy! Sy 67'
n n
drp, dyp + ———— dAz, 4 d (8P (B11)
57n Mz g, (8¢s) ( )
and that of (B1lO) is

Az AAz OAz

dAz - S,n dAz + 5,n d7' + 5,0 g (B12)
n n n n
aAzg’n g 675 p
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Meridian of station

D
™
7~ 7"n
m - A
Zg)n
6¢s
F
Az
s,n = '
2" Ty
N
s
B
Rsv,n
R
s
Ty
: \ s

Figure B-l.- Relation of geodetic azimuth and elevation to equiva-
lent spherical azimuth and elevation.

After substituting equation (B1l) for dy, in (B12),
I4

Y NA - [] 1

Az _ Cll-\.ZsLn . uAaS,n Byn \dAZ N /aAZg,n . aAZs,n a7n
s,n ~— n n

" \Sagn o e L N A

aAzs,n 7n

Sy 3(edy) ) )

n

As stated previously, Azg’n and 7yn are not independent of the deflec-
tion of the vertical. In reference 1 it is shown that '

dAzg y = (sin s - cos Azg  cos Pg tan Vn)d%s

+ sin Azg n tan 7y dds (B1k4)

The equivalent expression for 7, must be derived.
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The normal to the best fitting ellipsoid will be deflected An sec of arc

in the meridian of the normal to the old ellipsoid and Af sec of arc in the
prime vertical. It is now desired toc determine the change in the elevation

d7n

which will result.

Since the variables involved are arcs and will be measured at the common

origin s (the radar station), figure B-2 represents the geometry of the prob-
lem to be solved. The angle included by the arcs An and A is a right
angle., Thus, since An and A are small, the change in the deflection of
the vertical v can be written as

Lo

ve = Z&gE? + ZSng

Meridian of station

7 7 Tn,True

Figure B-2.- Effect on elevation resulting from a change in deflec-
tion of the vertical.
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Further, the law of cosines gives

i _ T . . £ _ _
COS[E - (7n + dyn)] = cos(—2- 7n)cos v + sinv s1n<2 7n> cos(Azg,n u)
which reduces to
sin(yn + dyn) = sin y, cos v + sin v cos 7n<cos Azg pn cos p + sin Azg pn sin p.)

where

s'l éﬂ
14

fl

M= tan‘l ‘i—f‘] = sin~t évg— co

In reference 1, A and An are related to the corresponding changes in
latitude and longitude by the expressions

Nt = dhg cos Pg

o = dfg
(In ref. 1, At and An are defined to be positive in directions opposite to

those used here. Thus, the signs in the above expressions must differ from
those in the reference.) Thus, since v 1is small and dyp will be small,

dyy = cos Azg ags + sin Azg’n cos Pg dAg (B15)

For expediency, the coefficients of dfg and dAg in equations (B1k4)
and (B15) are defined as

\
sin Az tan 7, = “———aAZg’n
g,n 5¢
s
> (B16)
37,
cos Azg n = —
g, 5¢S J
aAzg n
sin Pg - cos Azg n cos @s tan yy = 3 .
S
oy
n
sin Az cos e
g,n ¢S Ohg
Thus,
Nz Az
g,0 g,n
dAz = — 22 ¢, + ——=2— d\ B17)
g,n a¢s ¢S a}\s S ( 7
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and
dy, = EZE ags + 2;9 dAg (B18)
s s
By definition
s = Bs - Py
Thus,

d(6¢s) = aé;iS) dps + a_gz_s_)_ d¢é = dfs - dfg

and, after substituting equation (B7) for d@g

d(8ps) = - ggé da - ggé af - ggé dhg + < - §§§>d¢s (B19)

Finally, substituting equations (B19), (B18), and (Bl7) into (Bll) and
(B13) and collecting coefficients of like terms give

37p 37y, 37y, Tn 37y
P —_— —_— —_— ——= dh B20
ey ety g Yt g ety s (820)
where
o Tﬂa’é s )
aa 6( <] g
o o P
of o(8ps) of
O Om ¥s
Shs  3(8fs) dhs ) (B21)
m v, B (%)
a¢S a"n a‘ZSS aAZg,n a¢s a(6¢5) a¢s
7n - 875 87n + 875 aAZg,n
Mg Om OMg Mz, ONg )
and
Az Az Az z Az
= e 5,N s,n s,n s,n
dAzg n = = da e At a¢s’ ags + B%S, dAg S, dhg (B22)
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where
aAzSJn L aAzs’n 575 5¢é )
da A d(8fs) da
aAzS,n _ aAzS,n 57; e
of oy, (8ps) of
Azg n _ aAZs,n O 8¢;
ohg d7p 8(8¢s) ohg

> (B23)

aAzs,n aAzg,n . Az n a7n\87n aAZS,n . aAZs,n 575 \OAZg n
P 7 N y)Ps  \Hzg,n o7y  hzg,n) Ps

+ dAzg n Orn < 6¢é>

Op  O(88s) \ s
Azsn = aAzg’n + Az 21 Byn\ay aAZSJn + aAZS:n n \aAZg,n
Ohg 3 3yt ayn/axs Mzg n 7y Mz o) g J

The rectangular coordinates of the radar station are given in terms of the
geodetic latitude, longitude, and station height by equation (B2). The rec-
tangular coordinates are given as functions of spherical coordinates by

t
Xg = Rg cos Pg sin Ag

[

¥s = Rg cos g cos Ag (B2L)

1

zg = Rg sin fPg

If the xg coordinates ot equations (B2) and {B24) are equated, the
resulting expression solved for Rg would b

S)cos Ps

Re = (N + B (B25)
s (S cos 1

The same expression would result with the yg coordinate. The zg coordinate

would, however, give a different expression for Rg, but the numerical value
would be the same.

The total differential of Rg is

oR oR
dRg = —= dNg + —= dh 4 4 (B26)
ST, ° g ° ¢ P + a¢s ps
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Since dNVg and dfg are given by equations (B5) and (B6), respectively, after
substituting into equation (B26) and collecting the coefficients of like terms,

3R, R a;é;\aNs 3R,  OR, X aR 3R P,
Ws = <8Ns YW ™ 'e;ﬁ‘ o &ST =, 73“

+aRs ) a;é d . aRS+aRS a¢; Mg OR, a;zﬁ
Mg a¢' s aNg  op. dNg/of a¢s df

[}

BJ

(B27)

Consider figure B-3 in which the polar triangle (NP)(Vn s)(s) is formed
by the intersection of the meridian planes of the radar statlon and vehicle and

the plane containing the geocentric radii of the vehicle and the radar station
with a sphere of radius Rg. The angle at NP 1is

Earth center

Figure B-3.- Spherical coordinates of a satellite relative to a
radar station.

L6




APPENDIX B

ANgy,n = xv,n - As

and that at s 1s the spherical azimuth Azs,n of the satellite. Further,

/—\/“\'
the arcs NPs and NPV, are

and

TN
NPV = % - @

Ve
The arc sVﬁ is defined as ©Op and, from the plane triangle of fig-
ure B-3, it is seen that

R 1
sv,n CO5 7n

tan 6 =

(B28)

Rg + Rgy,n sin 7n

Since the radar observation of range is considered herein to be errorless, the
total differential of 68p is

o9 00
a8, = —BEE dRg + y? dyn (B29)
S n

But, dy, is given by equation (B20) and dRg is given by (B27). Thus, after
substituting and collecting terms

08 08 08 08 08
— n n n o} n
don = B da + o AF + i ags + e drg + e dhg (B30)
don _ %, (ORg OBy NNy %y )
da  ORg\ONg  opj N / da Sa drg

30y, oR; IRy o ¢\l . 3Ry Mg |0p . 37y, 8y
of oNg  OfL dNg/of  OpL of [dRg of oy

n

? (B31)

36y, <8RS . BR? P\ , B, By M (%6, , I ae?
s Mg g 5N8/5¢s s 5¢é s |ORs s Iy

(Equation continued on next page)
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00p _ Sy 8y
a%s BKS a7£ (B}l)
Bn _ Bp(oR; R, e L 74 Ben>
ohs  ORs\ohg Py ohg/ hg Jyp
7

Two additional expressions which can be obtained from the spherical tri-
angle of figure B-3 are

sin ¢¢,n = cos 8y sin Pg + sin 8y cos P cos Azg n (B32)
and
sin AMgy,n = Eif—fgﬁig sin 6p (B33)
? cos ; n
J

The total differential of equation (B32) is

26, B0

ABy o = —222 agL + a8, + —2% Az o (B3L)
’ 8¢é S 08n Azg ’
and that of (B33) is
W\ AN AN
dAN = ——728 g, + — 2028 g+ V28 qag (B35
sv,n 30, n a¢¢,n ¢v,n aAZs,n s,n )

The differentials d@g, d6p, and dAzg , are given, respectively, by

equations (BT7), (B30), and (B22). Therefore, after substituting into equa-
tion (B34) and collecting coefficients of like terms,

1 H ] 1 T
APy n = ®an da + Op p AF + ¢>¢S’n agy + g,n s + ¥ n dhg (B36)
where

v a¢\‘r,n 6¢é g + ;,n 90y, + a¢\‘r,n aAzs,n h
a,n a¢é ONg da 06y Oa aAzS’n da

- 5¢w‘/,n g Mg + s + a¢:r,n B + a¢x'r,n aAZs,n
o 3L \oNg of  Of dn of  MAzg p Of >
®| - a¢;,n a¢é aNS + a¢; + a¢\'I,n aen + ;)n aAZslg
¢S’n 5¢é Ng a¢s 5¢S 8 a¢n aAZs},n a¢s

(Equation continued on next page)

(B37)
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q>)'\ _ 5¢w'r,n 6, . a¢\'7,n aAZsLn

ss0 26, INs aAZS:n g ? (B37)
(I)' - a¢"f:n a¢;’ + a¢:,’n aen + a¢;f’n aAZS,n

hoin T 5y By | D By | Hag,n Ohg

Before the functional coefficients of the )‘v,n error equation can be
derived, it is necessary to refer to the definition of Msv,n' By definition

Dhgy,n = )‘v,n - s
Thus,

dAhgyv,n = Ay pn = dAg (B38)
and

Dv,n = Bhgy,p + dAg (B39)

After substituting equation (B35) into (B39), by a procedure similar to

that for deriving the coefficients of d¢",’n,

1 t 1 1
dAy,n = Aé’n da + Ap , Af + Ag agg + My n Qs + Ay 4 dbg (BLO)

where
AL L = 0 aA)‘sv,n N aA)‘sv,n 0y . aA?‘sv,n BAZs,n A
n =

’ a,n a¢;”n % Oa OAzg n da

A = o! Mgy 1 .\ aN‘sv,n d8p am\svzn BAZS,n
m - TEhn gt By Of  OAzg ,  Of

ASB - 0! aA7‘sv,n + aA}‘sv,n oy + aA}‘sv,n aAZs,n ? (BU1)
CRLSS ¢s:n B¢;,n 08y Mg aAZs,n P

Al -1+ o sv,n Ahgy n %8y, + Sv,n aAZsln
)\S)n )\S’n a¢\'f,n aen a?\s aAZS,n a}\s

Ay =0 Pgv,n aA}‘van 98y + aA)‘sv,n Azg n
s hg,n a¢\'r,n %, ohg OAzgp Ohg y

To complete the derivation of the coefficients of equation (8), an expres-
sion is needed for de,n- From the plane triangle of figure B-3
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'
Ry,n = Bey,n g;;*g% (Bh2)
But
sin o, = cos ¢;,n sin AAsv,n
sin AZS,n
Thus,
1
Rv,n _ Rsv,n cos 7, sin Azs,n (th)

1 N
cos ¢v,n sin Aksv,n

The differential of equation (B43) is

aRV n aRv n aRv n BRV n
dR = 2= dy! + —2 dAz + ag. _ + ——2— dAA (Blk)
By, R Szg 0T Py,n Mgy n o008

After substituting for dAAv,n, dAzs,n, d¢%,n, and d7ﬁ:

_ 1 1 ] 1 1
dRy,n = Pa,n da + Py aF + Py dfs + B | dNg + By o dbg (BYS)
where

1 N

B, wn g B Byp 2p My Mo

1
’ ’ v, ’" MAgy,n Oy, Oa Mzg n Oa
1
' +  ORy,n £ A aRv,n + aRv,n 7n + Ry n dAzg

P =90 Ap
f,n f)n a¢\',’n ,n WSV,D 87;1 of aAZS,n of

3Ry 3R, &R, , ' R Az
Pt = LAl 1 + s n o, v,n S5,N (Bh6)
Mo By 2 " DL Fe | Tesn Fo %

S
0]
-

jn}

I
=N
o0
-

o]
Q/
4 -
-
=

' - ol aRv,n + (Au L - l) aRv,n + aRv;,n 7 + aRv,n aAZs,n
’ Mgy ,n dp ONs  OAzg q OAg

aRV n + H BRv,n

\i
@ﬁ . A aRv,n ayn s aRv,n BAZS,n
877 By n 825 Mgy

d7, dng OhAzg n Ohg )

1

+

Now that the coefficients for equations (8) have been determined, it
remains only to determine the coefficients of (12). It will be recalled that
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2
-B_ . + VB . - b .C .
§ = F = tan—l n,l n,1 Aﬂ,l n,l1
’ 2An i

)

where An,i; Bn,i’ and Cn,i are given by equation (Al16). As a result,

\
(QE) = aanji aAn;i + aan)i aBn)i + aufl’l,i aCn,i
da/n,i Mp,i Oa OBp,i oa Cn,i oa
(§E> = aanii aAnJi + aanli aBn,i + acx’!l,i aCn,i
of /n,i OAp,i Of OBy, i oOf oCp,i Of
) (BUT)

OF _Omg OAny O g OBy Oan; Xnyg
: OAn,i By OBn,i By,n Xn,i Pyn
n,i ’ ’

JF _ Oay g Ay g N oy 4 9By 5 N oy 3 Cp 4
1 aAn,i aRv,n aBn,i aRv,n aCn,i aRv,n
_

which are the desired expressions.

The error equation for @, ; 1s given in a general form by equation (13).
2
As stated previously, the coefficients of equation (13) are functions of those

of (8), (9), and (12).

In this section the coefficients of equations (8) and (12) were derived
as functions of indicated partial derivatives and are given in equations (B37),
(B41), (B46), and (B4T). The indicated operations have been executed and the
results are given in appendix C. To obtain the algebraic expressions for

equations (B37), (B41), (B46G), and (B4T), it is required only to make neces-
sary substitutions.
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APPENDIX C
ANALYTICAL EXPRESSIONS FOR VARIOUS PARTIAL DERIVATIVES

In the section entitled "The Error Equation for qo" the coefficients of
equations (8) and (13) were derived as functions of partial derivatives. In
this appendix the partial derivatives of those expressions on which the coef-
ficients are dependent will be given.

The partial derivatives of expressions (B3), (B4), (B9), (B10), (B25),
(B28), (B32), (B33), and (B43) are as follows:

aNs ( N
8 - (or - £2)28 sin P cos
MPs We ° b
MNg Ny
da &
oN N
5EE = (1 - f);% sin°fg
5¢é ) Ns 241
e g e g
t
h
P - (e - £2) T8 tan s cos Py
(BNS (NS + hs)g
' N 241
Bs 1-—-5—(21‘-1"2)%
M Ng + hg cos®Pg
b¢é Ng 241
Yol -2(1 - f)ﬁ;—I—Eg tan Pg cos“Pg
9Rg Rs

ahs NS + hs

ORg R
Ng  Ng + hg

ORg

¥

It

oo}
[52]

or
B
S
0 -

52




APPENDIX C

3R
—= = -Rg tan @
s
08y -sin®0y

ORs  Rgy,n cos Tn

o8 R sing
n - 5 sin 7y + l>——n-

]

o7y Rsv,n cos®y)
drh) sin 8y sin yy + cos 8y cos yy cos Azg n
8P cos 7,
1
375 i} cos 8y cos yp + sin Bfg sin y, cos Azg,n
Orn cos 7£
3 sin &g cos y, sin Azg p
aAzg,n cos 7y
Az
S,n _ t
—ag— = tan AZs’n tan 7n
dAzg
—S;;L— = -tan Azs,n tan 7,
OAz
s,n _
ézz;—; = tan Azs’n cot Azg,n
2

[} H . [
5¢v,n cos 8y cos g - sin 8y sin Pg cos Azg n

s cos $y,n

t . ] . 1}
a¢v,n -sin P sin 6 + cos Pg cos tp cos Azg p

6pn cos PI
2

1 .
v,n ~-sin 6, cos ¢s sin Azs,n

1
oAzg n cos ¢v,n



sV,

The partial derivatives given in

OAz
g,Nn R

— 2" = gin
s
JAz

—8&0 _ gin
INg

ayn

s

7n

ONg

If the partial derivatives o
Cn,i are obtained and substitute

become
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tan AA cot 8,

sV,n

tan AAsv,n cot Azs,n

it

1
tan Ahgy,n tan ¢v,n

]

1
‘Rv,n tan 7y

n

equations (Bl7) and (B18) are

Azg n tan 7y

Ps - cos Azg n cos fg tan ¥y

]

cos Az
° g,n

]

sin Azg pn cos Ps

f a.n,i Bn,i) and
d into expressions (B4T), the results will

with respect to An,iy
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B, 4 aBn:i - 2la. ESELE + 0. éﬁgzi
_ i, M T B7 2a 77 oa 2 tan o Fnj1
i
<§E> ) oa 2hp,q tan ay 3 * By g o oa
da/n,i gAn,i(l + tangan’i>
OBy 1 oCy 5 Ap 4
BBn}l . Bn,i Bf, - 2( n,i ‘ggL— +Cn,i ‘gEL" 5 ten aAn,l
<6F> ot 2Ap,i ten an,i * Bps Bt of
of n,i 2A, 1(1 + tanean 1)
B aBn,1 - oA aani +C aAn,i

n,i 1 n,i 8¢' n,i 8¢'

aBn,i v,n v,n v,n aA‘n i

- + - 2 tan %n,1i =
( OF ) v,n 2An,i tan op 3 + By g a¢v,n
a¢v,n n.i 2An,i(l + tanean,i)
) Bn,i acn,l aAn,l
3B n,i 3 -2 An,i S + 0,1y
n,i Ry n Ry n Ry ,n 2 tan o aAn,i
( XF > v, 2Ap i tan ap 3 + By g % Ry ,n
OR 2
Voh/n i gAn,i(l + tan an,i)
where

L 241
sin 2¢v,n

8

. [(21‘ - f2)2

d .
Pal (1 -5 >(l - )%+ (or - £2)( - £)2sing)

2 v,n
Ry,n

+ (28 - £2)(1 - f)2<l -
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&
~.<-
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2

- ((es - f2)<1 - ?R%i>51n2¢\'r,n + 21 - oler - fz)]< - &

Ry,n

ERV’n{<l - iu >(1 - o)+ (or - fz)[(Ef - £2)sinfgy , + 2(1 - f)2] sin®f, o

cos%%

+ (or - fz)[(Ef - fe)sin2¢;,,n + (1 - f)2< - iu >:I°°s2¢:f,n

Rv,n

28 (e - r2)(er - £8)sinpy o+ (1 - f)2<l - R%g > + i(l -

- (1 - f)2<l - 22 >}cosge§sin 2¢:,,n
Ry on

a2 >l:(2f - f2)cosg¢\',,n

2
Ry

s

, 2 5 :
za(ar - fg)[(2f - £%)sin%gy o + <1 -2 >(1 - f) :|sin 2y n o8 B;

P e

2
2e2(1 - £)(2(ar - £2)sing) , + [1 - 2(er - fg)] (1 - = ) sin 26, ; cos By

RZ ,n

21 - £)%(er - £2) e

Ry,n

R 1
sin 2¢v,n cos By

a2{(2f - £2)sinogy o + 2[(21" - fe)sin2¢:,,n + (1 - f)2( -

Ry,n

2 >jlcos 2¢;,}cos Bi(2f - fe)
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»n F 1}

%;1& - -2a{l -2 R%a >(1 -t [2 (1 - R%E )(1 -2+ (2r - fE)sin2¢:,)nj|(2f - fZ)sin2¢:,,r}

ag?’i = 2a%(1 - £) 2(1 - ;2 >(1 -2 . {[1 - 2(2f - f2>}< - 32 > + 2(2f - fz)sin2¢\',,%sin2¢:’,n

F2e) Rv,n

.=—2 al"

aRV’n R\Br,n

(1 - f)z[(l - f)2 + (Ef - fz)sin2¢\',,n}

2
I5s!

?ir"—dl = —a2(2f - f2)‘:(l - f)e( - 2 > + 2(2f - fe)sin2¢:,,n:} sin 2¢\1/,n

Finally, it can be stated that since
t 1
€n,i = F (da, af, d¢v,n) d-Rv,n)

and expressions for d;b and dR are given by equation (10) as functions of
those relations given in (B37), (B41), and (B46), the coefficients of (13) can
be readily obtained.
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COEFFICIENTS OF THE DE GRAAFF-HUNTER EQUATIONS

The method of de Graaff-Hunter was chosen over that of Vening Meinesz
since it is simpler to work with. This method is given in reference 1 on
pages 127-130 in the form most widely used.

The accuracy of the two methods is largely dependent upon distance from
the origin of the spheroid. For shorter distances the two methods will give
accuracies of 0.001" of arc. For greater distances, the accuracy of the method
of de Graaff-Hunter falls off whereas that of Vening Meinesz will give accura-
cies of 0.001" of arc or better.

The form of the de Graaff-Hunter equations as given in reference 1 is not
satisfactory for this paper. The form of equation (9) is that form desired.
To obtain it, the equations were expanded, and the corresponding coefficients
of the five arbitrarily defined constants of a datum were collected. 1In so
doing, it was determined that by making certain trigonometric substitutions the
resulting coefficients can be simplified.

Further, in reference 1 3®Ng and &N, were considered positive when the
new spherold was above the old. In this paper hg is positive for elevations
above the spheroid. ©Since hg and ONg increase in opposite directions,

Ahg = -ABNg

Thus, the expressions of the de Graaff-Hunter equations giving the change in
spheroidal height must be multiplied by a minus one.

The coefficients of equation (9) are as follows:

(cos Us sin ug - sin ug cos ug cos w)c

Lg =
a a
_ . .2 ;
Le = c[s1n 2ug - sin ug cos uy sin“u, cos w - cos ug sin ugll + coseuo
Lﬂ = ¢ sin ug sin W

t
e
"

-c(sin ug sin u, cos w + cos ug cos uo)

c(sin Ug COS Uy COS W - €OSs ug sin uo)

L =
&N 3
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h . 1
- [(l - -a—s>sec @s cos uy sin w}a

h
Me = —(l - —f) sec ¢s CoSs Uy sinzuo sin w

&
Il

h
-a—s sec Pg cos

=
i}
1
—
1

hg . :
Mg = -\1 - £)sec g sin u, sin @

h .
Mgy = l:(l - ?s)sec $s cos u, sin u{l%

COS ug COS W cos uy + sin ug sin ug - 1

2

= =a [:Sln Ug Sin uo (l + COSallO) - CO8 ug cOsS @ sin Uq COs U.O

S’ﬂ -8 COS Uug sin @

Se = -a(sin ug cos ug - €OS Ug sin ug Ccos W)

SgNy = ~-(cos ug cos @ cos u, + sin ug sin wg)
where

and

c = ( - %—)(l + f cos2¢s)

= (1 - £)tan @g

o
o
5
e

wn
!

tan ug = (1 - f)tan g

(D:-?\s"‘?\o

- sineus}

29
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